5 found
Order:
  1.  34
    Almost structural completeness; an algebraic approach.Wojciech Dzik & Michał M. Stronkowski - 2016 - Annals of Pure and Applied Logic 167 (7):525-556.
  2.  28
    Deciding active structural completeness.Michał M. Stronkowski - 2020 - Archive for Mathematical Logic 59 (1-2):149-165.
    We prove that if an n-element algebra generates the variety \ which is actively structurally complete, then the cardinality of the carrier of each subdirectly irreducible algebra in \ is at most \\cdot n^{2\cdot n}}\). As a consequence, with the use of known results, we show that there exist algorithms deciding whether a given finite algebra \ generates the structurally complete variety \\) in the cases when \\) is congruence modular or \\) is congruence meet-semidistributive or \ is a semigroup.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  14
    Profiniteness in finitely generated varieties is undecidable.Anvar M. Nurakunov & Michał M. Stronkowski - 2018 - Journal of Symbolic Logic 83 (4):1566-1578.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  37
    Relation Formulas for Protoalgebraic Equality Free Quasivarieties; Pałasińska’s Theorem Revisited.Anvar M. Nurakunov & Michał M. Stronkowski - 2013 - Studia Logica 101 (4):827-847.
    We provide a new proof of the following Pałasińska's theorem: Every finitely generated protoalgebraic relation distributive equality free quasivariety is finitely axiomatizable. The main tool we use are ${\mathcal{Q}}$ Q -relation formulas for a protoalgebraic equality free quasivariety ${\mathcal{Q}}$ Q . They are the counterparts of the congruence formulas used for describing the generation of congruences in algebras. Having this tool in hand, we prove a finite axiomatization theorem for ${\mathcal{Q}}$ Q when it has definable principal ${\mathcal{Q}}$ Q -subrelations. This (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  13
    Grzegorczyk Algebras Revisited.Michał M. Stronkowski - 2018 - Bulletin of the Section of Logic 47 (2):129.
    We provide simple algebraic proofs of two important facts, due to Zakharyaschev and Esakia, about Grzegorczyk algebras.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark